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Lecture 21 

Physics 404 

 

 Helium is the only substance that does not solidify at any temperature at atmospheric pressure. 
Liquid He has a concentration of 51 /nm3 at 4.2 K, as compared to the quantum concentration of 16 / 
nm3, hence      and it is a quantum fluid.   Quantum mechanics plays a fundamental role in the 

statistical properties of liquid He. 

 We will focus today on the 4He isotope.  This neutral atom has 2 protons and 2 neutrons in the 
nucleus, with 2 electrons orbiting.  Each of these constituent particles has spin-1/2, but they appear in 
pairs in the composite object.  Hence the 4He atom acts like a composite object of spin 0.  It is also 
chemically inert.  Liquid 4He is a fluid of particles that obeys Bose-Einstein statistics with weak 
interactions.  When it is cooled below   = 2.2 K, boiling comes to a stop (see the video).  The heat 
capacity shows a weak divergence at   .  Liquid He can flow through narrow constrictions below    but 
not above.  However measurements show that moving objects in He still experience drag. 

 The Bose-Einstein thermal occupation number          
 

          
 has the peculiar property 

that the chemical potential must always remain below the energy values of the states of the system.  If 
not, then    , and it makes no sense to have a negative thermal occupation number.  Hence the 
chemical potential is bounded above by the lowest energy eigenstate of the system.  We shall take this 
state (the ground state) to have energy zero, without loss of generality.  This means that the chemical 
potential must always be negative for our considerations here. 

 We considered the He atoms to be free and non-interacting, but held in a box of side L x L x L.  
We assume that it is in equilibrium with a reservoir at temperature   and chemical potential  .  To 

determine the chemical potential, we enforce the number constraint:                .  We 

converted this sum to an integral on energy as                   
 

 
, where the density of states 

for Bosons is      
 

    
  

  
 
   

    , and the Bose-Einstein thermal average occupation number is 

         
 

          
.  Note that the integral starts at 0 energy, which is the ground state energy.  The 

integral becomes   
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   .  The function        is 

gently varying from a value of 0 at large and negative values of    , up to a maximum value of 2.612 at 
 

 
  , which is the maximum permissible value of the argument.   

 The number equation   
 

    
  

  
 
   

    
  

 
       leads to a crisis as temperature falls.  The 

number   is perhaps on the order of 1023.  The right hand side is made up of two temperature 

dependent quantities, namely   and     .  As temperature drops, the      term also drops in 
magnitude.       must increase to compensate.  However,        can get no larger than 2.612.  At that 
point we can no longer satisfy the number equation, and a crisis ensues.  This problem is resolved by 
noting the fact that in the limit of low temperature a large (i.e. macroscopic) number of particles join the 
ground state.  Our calculation of the particle number includes only the excited state – note that 
        , which means we did not include the ground state in our number calculation!  This can be 

http://www.youtube.com/watch?v=2Z6UJbwxBZI


2 

 

corrected by writing:              
 

    
  

  
 
   

    
  

 
      , and including the thermal 

average occupation of the ground state explicitly.  Including the ground state occupation now balances 
the equation.  One finds that at low temperatures,     from below, maximizing       , but also 
adding a large number of particles to the ground state.  The thermal occupation of the ground state is 

           
 

       
 

 

  
 

 
    

  
 

 
, for finite but small  .  By tuning the chemical potential very 

close to zero from below, the system can put an arbitrary number of particles into the ground state at 
finite temperature  .  Note that the ground state is singled out in this process – no other state enjoys 
this luxury – see the discussion on pages 201 and 202 of K+K. 

The critical temperature for Bose-Einstein condensation can be estimated as the crisis 

temperature from the original number equation as:    
    

 
 
   

     
 
   

.  The ‘crisis’ is that the excited 

states are no longer populated heavily enough to account for all of the particles.  Putting in the numbers 
for liquid 4He (N/V = 2 x 1028 /m3) yields          , which is close to the observed lambda-point at 2.2 
K.  For cold atomic Na (N/V = 1020 /m3) yields          , which is close to the observed Bose-Einstein 
condensation (BEC) temperature of about      seen in cold atom traps.  It is remarkable that an 
estimate based on a non-interacting gas model can come so close to predicting the actual values of 
these condensation temperatures. 

http://en.wikipedia.org/wiki/Bose-Einstein_condensate
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